Localized plasmons in bilayer graphene nanodisks

Localized plasmons in bilayer graphene nanodisks
We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially homogeneous surface conductivity, and an efficient alternative two-dimensional electrostatic approach is employed to carry out all the numerical calculations of plasmon resonances. Due to unique electronic band structures, the resonance frequency of the traditional dipolar plasmonic mode in the AA-stacked BLG nanodisk is roughly doping independent in the low-doping regime, while the mode is highly damped as the Fermi level approaches the interlayer hopping energy γ associated with tunneling of electrons between the two layers. In addition to the traditional dipolar mode, we find that the AB-stacked BLG nanodisk also hosts a new plasmonic mode with energy larger than γ.
This mode can be tuned by either the doping level or structural size, and, furthermore, this mode can dominate the plasmonic response for realistic structural conditions.

General information
Publication status: Published
Organisations: Center for Nanostructured Graphene, Department of Photonics Engineering, Structured Electromagnetic Materials, China University of Mining And Technology
Contributors: Wang, W., Xiao, S., Mortensen, N. A.
Number of pages: 6
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 93
Issue number: 16
Article number: 165407
ISSN (Print): 2469-9950
Ratings:
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.192
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
PRB_2016.pdf
DOIs: 10.1103/PhysRevB.93.165407
Source: PublicationPreSubmission
Source-ID: 123080663
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review