Localization of an O-glycosylated site in the recombinant barley alpha-amylase 1 produced in yeast and correction of the amino acid sequence using matrix-assisted laser desorption/ionization mass spectrometry of peptide mixtures

Jens S. Andersen, Morten Søgaard, Birte Svensson, Peter Roepstorff

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of peptide mixtures was used to characterize recombinant barley alpha-amylase 1, produced in yeast. Three peptide mixtures were generated by cleavage with CNBr, digestion with endoproteinase Lys-C and Asp-N, respectively, and analyzed directly by MALDI-MS. Based on the three mass spectrometric peptide maps, an error in the sequence deduced from cDNA, resulting in a mass difference of 28 Da, was located to a sequence stretch of 5 amino acid residues; furthermore, a dihexose substituent was identified on Thr410. Subsequent Edman degradation of two selected peptides isolated from the endoproteinase Lys-C digest corrected the sequence to be Val instead of Ala in position 284 and confirmed the O-glycosylation. These results demonstrate that the direct peptide mixture analysis by MALDI-MS is a rapid and sensitive method for protein characterization and provides valuable information before further characterization.
Original languageEnglish
JournalBiological Mass Spectrometry
Volume23
Pages (from-to)547-554
Publication statusPublished - 1994
Externally publishedYes

Cite this

@article{92716475f85748e6804bff1785a036fb,
title = "Localization of an O-glycosylated site in the recombinant barley alpha-amylase 1 produced in yeast and correction of the amino acid sequence using matrix-assisted laser desorption/ionization mass spectrometry of peptide mixtures",
abstract = "Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of peptide mixtures was used to characterize recombinant barley alpha-amylase 1, produced in yeast. Three peptide mixtures were generated by cleavage with CNBr, digestion with endoproteinase Lys-C and Asp-N, respectively, and analyzed directly by MALDI-MS. Based on the three mass spectrometric peptide maps, an error in the sequence deduced from cDNA, resulting in a mass difference of 28 Da, was located to a sequence stretch of 5 amino acid residues; furthermore, a dihexose substituent was identified on Thr410. Subsequent Edman degradation of two selected peptides isolated from the endoproteinase Lys-C digest corrected the sequence to be Val instead of Ala in position 284 and confirmed the O-glycosylation. These results demonstrate that the direct peptide mixture analysis by MALDI-MS is a rapid and sensitive method for protein characterization and provides valuable information before further characterization.",
author = "Andersen, {Jens S.} and Morten S{\o}gaard and Birte Svensson and Peter Roepstorff",
year = "1994",
language = "English",
volume = "23",
pages = "547--554",
journal = "Biological Mass Spectrometry",

}

TY - JOUR

T1 - Localization of an O-glycosylated site in the recombinant barley alpha-amylase 1 produced in yeast and correction of the amino acid sequence using matrix-assisted laser desorption/ionization mass spectrometry of peptide mixtures

AU - Andersen, Jens S.

AU - Søgaard, Morten

AU - Svensson, Birte

AU - Roepstorff, Peter

PY - 1994

Y1 - 1994

N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of peptide mixtures was used to characterize recombinant barley alpha-amylase 1, produced in yeast. Three peptide mixtures were generated by cleavage with CNBr, digestion with endoproteinase Lys-C and Asp-N, respectively, and analyzed directly by MALDI-MS. Based on the three mass spectrometric peptide maps, an error in the sequence deduced from cDNA, resulting in a mass difference of 28 Da, was located to a sequence stretch of 5 amino acid residues; furthermore, a dihexose substituent was identified on Thr410. Subsequent Edman degradation of two selected peptides isolated from the endoproteinase Lys-C digest corrected the sequence to be Val instead of Ala in position 284 and confirmed the O-glycosylation. These results demonstrate that the direct peptide mixture analysis by MALDI-MS is a rapid and sensitive method for protein characterization and provides valuable information before further characterization.

AB - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of peptide mixtures was used to characterize recombinant barley alpha-amylase 1, produced in yeast. Three peptide mixtures were generated by cleavage with CNBr, digestion with endoproteinase Lys-C and Asp-N, respectively, and analyzed directly by MALDI-MS. Based on the three mass spectrometric peptide maps, an error in the sequence deduced from cDNA, resulting in a mass difference of 28 Da, was located to a sequence stretch of 5 amino acid residues; furthermore, a dihexose substituent was identified on Thr410. Subsequent Edman degradation of two selected peptides isolated from the endoproteinase Lys-C digest corrected the sequence to be Val instead of Ala in position 284 and confirmed the O-glycosylation. These results demonstrate that the direct peptide mixture analysis by MALDI-MS is a rapid and sensitive method for protein characterization and provides valuable information before further characterization.

M3 - Journal article

VL - 23

SP - 547

EP - 554

JO - Biological Mass Spectrometry

JF - Biological Mass Spectrometry

ER -