Abstract
A two-dimensional theoretical study of the aeroelastic behaviour of an airfoil has been performed, whose geometry can be altered using a rear-mounted flap. This device is governed by a controller, whose objective is to reduce the airfoil displacements and therefore, the stresses present in a real blade. The aerodynamic problem was solved numerically by a panel method using the potential theory, suitale for modelleing attached flows. It is therefore mostly using the potential theory, suitable for modelling attahed flows. It is therefore mostly applicable for Pitch Regualted Variabel Speed (PRVS) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction in loads in real wind turbines.
Keywords: Variable Geometry, Wind Turbine, Load Alleviation, Fatigue Load, Trailing Edge Flap.
Original language | English |
---|---|
Journal | Wind Engineering |
Volume | 29 |
Issue number | 2 |
Pages (from-to) | 169-182 |
ISSN | 0309-524X |
DOIs | |
Publication status | Published - 2005 |