Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

Wai Prathumpai, S.J. Flitter, Mhairi Mcintyre, Jens Nielsen

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y-xp (total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7 +/- 0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3 +/- 0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60 +/- 0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10 +/- 0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.
    Original languageEnglish
    JournalApplied Microbiology and Biotechnology
    Volume65
    Pages (from-to)714-719
    ISSN0175-7598
    DOIs
    Publication statusPublished - 2004

    Cite this

    @article{f50d46a4bac74fb3b30e46345da5b4f9,
    title = "Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus",
    abstract = "Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y-xp (total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7 +/- 0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3 +/- 0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60 +/- 0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10 +/- 0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1{\%} of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.",
    author = "Wai Prathumpai and S.J. Flitter and Mhairi Mcintyre and Jens Nielsen",
    year = "2004",
    doi = "10.1007/s00253-004-1699-y",
    language = "English",
    volume = "65",
    pages = "714--719",
    journal = "Applied Microbiology and Biotechnology",
    issn = "0175-7598",
    publisher = "Springer",

    }

    Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. / Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi; Nielsen, Jens.

    In: Applied Microbiology and Biotechnology, Vol. 65, 2004, p. 714-719.

    Research output: Contribution to journalJournal articleResearchpeer-review

    TY - JOUR

    T1 - Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    AU - Prathumpai, Wai

    AU - Flitter, S.J.

    AU - Mcintyre, Mhairi

    AU - Nielsen, Jens

    PY - 2004

    Y1 - 2004

    N2 - Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y-xp (total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7 +/- 0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3 +/- 0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60 +/- 0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10 +/- 0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.

    AB - Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y-xp (total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7 +/- 0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3 +/- 0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60 +/- 0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10 +/- 0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.

    U2 - 10.1007/s00253-004-1699-y

    DO - 10.1007/s00253-004-1699-y

    M3 - Journal article

    VL - 65

    SP - 714

    EP - 719

    JO - Applied Microbiology and Biotechnology

    JF - Applied Microbiology and Biotechnology

    SN - 0175-7598

    ER -