Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate - DTU Orbit (05/10/2019)

Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate

Six males clad only in shorts were exposed to high levels of airborne di(n-butyl) phthalate (DnBP) and diethyl phthalate (DEP) in chamber experiments conducted in 2014. In two 6 h sessions, the subjects were exposed only dermally while breathing clean air from a hood, and both dermally and via inhalation when exposed without a hood. Full urine samples were taken before, during, and for 48 h after leaving the chamber and measured for key DnBP and DEP metabolites. The data clearly demonstrated high levels of DnBP and DEP metabolite excretions while in the chamber and during the first 24 h once leaving the chamber under both conditions. The data for DnBP were used in a modeling exercise linking dose models for inhalation and transdermal permeation with a simple pharmacokinetic model that predicted timing and mass of metabolite excretions. These models were developed and calibrated independent of these experiments. Tests included modeling of the "hood-on" (transdermal penetration only), "hood-off" (both inhalation and transdermal) scenarios, and a derived "inhalation-only" scenario. Results showed that the linked model tended to duplicate the pattern of excretion with regard to timing of peaks, decline of concentrations over time, and the ratio of DnBP metabolites. However, the transdermal model tended to overpredict penetration of DnBP such that predictions of metabolite excretions were between 1.1 and 4.5 times higher than the cumulative excretion of DnBP metabolites over the 54 h of the simulation. A similar overprediction was not seen for the "inhalation-only" simulations. Possible explanations and model refinements for these overpredictions are discussed. In a demonstration of the linked model designed to characterize general population exposures to typical airborne indoor concentrations of DnBP in the United States, it was estimated that up to one-quarter of total exposures could be due to inhalation and dermal uptake.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, United States Environmental Protection Agency, Missouri University of Science and Technology, National Institute of Standards and Technology, Ruhr University Bochum, Fraunhofer Wilhelm-Klauditz-Institut (WKI)
Number of pages: 9
Pages: 601-609
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Exposure Science and Environmental Epidemiology
Volume: 27
Issue number: 6
ISSN (Print): 1559-0631

Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.82 SJR 1.346 SNIP 1.171
Web of Science (2017): Impact factor 3.083
Web of Science (2017): Indexed yes
Original language: English
Keywords: Dermal permeation modeling, DnBP, Pharmacokinetic modeling

Electronic versions:
Untitled_2.pdf

DOIs:
10.1038/jes.2016.48

Source: FindIt
Source ID: 2334963181
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review