Abstract
The leave-one-out cross-validation scheme for generalization assessment of neural network models is computationally expensive due to replicated training sessions. In this paper we suggest linear unlearning of examples as an approach to approximative cross-validation. Further, we discuss the possibility of exploiting the ensemble of networks offered by leave-one-out for performing ensemble predictions. We show that the generalization performance of the equally weighted ensemble predictor is identical to that of the network trained on the whole training set. Numerical experiments on the sunspot time series prediction benchmark demonstrate the potential of the linear unlearning technique
Original language | English |
---|---|
Journal | Advances in Computational Mathematics |
Volume | 5 |
Issue number | 1 |
Pages (from-to) | 269-280 |
ISSN | 1019-7168 |
DOIs | |
Publication status | Published - 1996 |