Abstract
In this work we address the problem of separating multiple speakers from a single microphone recording. We formulate a linear regression model for estimating each speaker based on features derived from the mixture. The employed feature representation is a sparse, non-negative encoding of the speech mixture in terms of pre-learned speaker-dependent dictionaries. Previous work has shown that this feature representation by itself provides some degree of separation. We show that the performance is significantly improved when regression analysis is performed on the sparse, non-negative features, both compared to linear regression on spectral features and compared to separation based directly on the non-negative sparse features.
Original language | English |
---|---|
Title of host publication | Applications of Signal Processing to Audio and Acoustics : IEEE Workshop on (WASPAA) |
Publisher | IEEE |
Publication date | 2007 |
ISBN (Print) | 978-1-4244-1620-2 |
DOIs | |
Publication status | Published - 2007 |
Event | 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics - New Paltz, United States Duration: 21 Oct 2007 → 24 Oct 2007 |
Conference
Conference | 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics |
---|---|
Country/Territory | United States |
City | New Paltz |
Period | 21/10/2007 → 24/10/2007 |