Linear complexity for multidimensional arrays - a numerical invariant

Domingo Gomez-Perez, Tom Høholdt, Oscar Moreno, Ivelisse Rubio

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Abstract

Linear complexity is a measure of how complex a one dimensional sequence can be. In this paper we extend the concept of linear complexity to multiple dimensions and present a definition that is invariant under well-orderings of the arrays. As a result we find that our new definition for the process introduced in the patent titled “Digital Watermarking” produces arrays with good asymptotic properties.
Original languageEnglish
Title of host publicationProceedings of the IEEE International Symposium on Information Theory (ISIT 2015)
PublisherIEEE
Publication date2015
Pages2697-2701
ISBN (Print)978-1-4673-7704-1
DOIs
Publication statusPublished - 2015
EventIEEE International Symposium on Information Theory (ISIT 2015) - Hong Kong, Hong Kong
Duration: 14 Jun 201519 Jun 2015
http://www.isit2015.org/

Conference

ConferenceIEEE International Symposium on Information Theory (ISIT 2015)
CountryHong Kong
CityHong Kong
Period14/06/201519/06/2015
Internet address

Keywords

  • Linear complexity
  • Invariance
  • Groebner base
  • Correlatio
  • Arrays
  • Watermarking

Fingerprint Dive into the research topics of 'Linear complexity for multidimensional arrays - a numerical invariant'. Together they form a unique fingerprint.

Cite this