Life cycle cost of maintaining the effectiveness of a ship’s structure and environmental impact of ship design parameters: An update - DTU Orbit (10/07/2019)

In order to maintain shipping capacity to serve seaborne trade, new ships have to be built to replace those scrapped. The cost of building, manning, operating, maintaining and repairing a ship throughout its life is borne by society at large through market mechanisms. The original paper investigated through a cost/benefit analysis, how the average annual cost of ship transport varies with the corrosion additions elected at the design stage. The results of the study clearly indicated that ships built with sufficient corrosion allowances, truly adequate for the ship’s design life, have a lower life cycle cost per annum (AAC) despite the fact that such ships would carry a slightly smaller quantity of cargo. Furthermore the safety and environmental benefits due to the reduced repairs and extended lifetime of such ships were briefly discussed. The debate of how robust a ship should be was also transferred to IMO in the context of Goal Based Standards following a submission by Japan which stated that the increased steel weight of a more robust ship will result in increased CO2 emissions due to a reduced cargo carrying capacity. Greece replied by submitting a summary of the original paper and preliminary estimations on Life cycle CO2 emissions disputing the Japanese contentions. However, taking onboard the challenge, the authors present here an update, using the final IACS CSR bulk carrier corrosion margins and taking into account the major environmental implications of the heavier ship scantlings for two bulk carrier size brackets, Panamax and Handymax. The results show that the more robust ships would produce less CO2 emissions over their lifetime.

General information
Publication status: Published
Organisations: Hellenic Chamber of Shipping, Atlantic Bulk Carriers Management Ltd., National Technical University of Athens
Contributors: Gratsos, G. A., Psaraftis, H. N., Zachariadis, P.
Publication date: 2009
Peer-reviewed: Yes
Event:
Keywords: Corrosion, Cost benefit analysis, Costs, Design, Environmental impact, Life cycle, Repair, Ships
Source: dtu
Source-ID: n:oai:DTIC-ART:compendex/145083718::36159
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2009 › Research › peer-review