Abstract
Lithium ion batteries produced using the water-based manufacturing processes, as a greener technology, have great potential to be used in future electric vehicles (EVs). A cradle-to-grave life cycle assessment model configured for actual EV applications has been developed for the water-based manufactured lithium nickel manganese cobalt oxide (NMC)-graphite battery pack. Experimental and modeling results cover raw material extraction and processing, water-based battery manufacturing processes, battery usage during EV driving, and direct recycling at End-of-Life. The ReCiPe method is employed to investigate the environmental impacts of the water-based battery pack and benchmark it against the impacts of a conventional N-methyl-2-pyrrolidone (NMP)-based battery pack with the same mass. The cradle-to-grave energy consumption of the studied water-based battery pack is 0.976 MJ/km EV driving, equivalent to a 4.5% reduction over the NMP-based battery pack. Aside from energy usage, we find reductions in all environmental impact categories (3.0%∼85%) compared to the conventional battery pack.
Original language | English |
---|---|
Article number | 107152 |
Journal | Resources, Conservation and Recycling |
Volume | 198 |
Number of pages | 9 |
ISSN | 0921-3449 |
DOIs | |
Publication status | Published - 2023 |
Keywords
- Lithium ion battery
- Water-based manufacturing
- Electric vehicles
- Life cycle assessment
- Environmental impact