Learning Supervised Topic Models for Classification and Regression from Crowds

Research output: Contribution to journalJournal article – Annual report year: 2017Researchpeer-review

Documents

DOI

View graph of relations

The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.
Original languageEnglish
JournalI E E E Transactions on Pattern Analysis and Machine Intelligence
Volume39
Issue number12
Pages (from-to)2409-2422
ISSN0162-8828
DOIs
Publication statusPublished - 2017
CitationsWeb of Science® Times Cited: No match on DOI

Download statistics

No data available

ID: 139267456