Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics

Research output: Contribution to journalJournal article – Annual report year: 2019Researchpeer-review

DOI

View graph of relations

Halide perovskites have continued to rise as attractive light absorber materials, mainly driven by their potential wide applications in the fields of solar cells, photodetectors, lasers and others. However, Pb-containing perovskites are poisonous and could cause serious potential problems to our environment. Thus, there is a strong desire to develop lead-free perovskites as environmentally friendly alternatives. Here, we have shown a successful synthesis of a non-toxic single crystalline double-halide perovskite, Cs3BiBr6, and analysed its structural characteristics in detail. This perovskite represents a new structure in terms of double-halide perovskites. The crystal structure features isolated BiBr6 polyhedra forming a zero-dimensional halide perovskite. The bandgap of this compound is measured to be 2.55 eV. High thermal stability is also clearly shown in the Cs3BiBr6 single crystal. A photodetector based on this compound is fabricated and tested, which exhibits an impressive detectivity of 0.8 × 109 Jones and low dark current under 400 nm light illumination. Overall, our results show that the Cs3BiBr6 perovskite as a lead-free perovskite has interesting structures and promising properties for optoelectronic devices.
Original languageEnglish
JournalJournal of Materials Chemistry C
Volume7
Issue number11
Pages (from-to)3369-3374
Number of pages7
ISSN2050-7526
DOIs
Publication statusPublished - 2019
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 171225637