Late Holocene pathway of Asian Summer Monsoons imprinted in soils and societal implications - DTU Orbit (09/08/2019)

Late Holocene pathway of Asian Summer Monsoons imprinted in soils and societal implications

The Asian Summer Monsoons (ASM) represent the main source of precipitation in China and East Asia with about one third of the world population and a region of widespread civilizations. Identifying the temporal and spatial patterns (pathways) of these monsoonal events during the Late Holocene to today has been a matter of debate amongst the scientific community. Here we show that the distribution patterns of the cosmogenic isotope 10Be and oceanic 127I in the topsoil across China exhibit imprints of the main ASM pathways. Our results indicate the monsoon pathway pattern persisted for several millennia or more and suggest a strong bond between 10Be and water vapor transport patterns. Our data also reveal a 127I distribution pattern controlled by the ASM pathways, rather than proximity to the sea or bedrock weathering. The persistent pathway of the ASM during the late Holocene, together with higher than average global soil iodine concentration, may have further strengthened the development of civilizations in this region of the world through reduction of iodine deficiency related diseases.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Radioecology and Tracer Studies, Hohai University, United Arab Emirates University, Chinese Academy of Sciences, Desert Research Institute, Uppsala University, Lund University, University of Waterloo, Ohio State University
Corresponding author: Yu, Z.
Pages: 35-44
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Quaternary Science Reviews
Volume: 215
ISSN (Print): 0277-3791
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: 10Be, 127I, Asian Summer Monsoons
DOIs:
10.1016/j.quascirev.2019.05.002
Source: FindIt
Source-ID: 2448001103
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review