TY - JOUR
T1 - Large thermoelectric power variations in epitaxial thin films of layered perovskite GdBaCo2O5.5±δwith a different preferred orientation and strain
AU - Chatterjee, Arindom
AU - Chavez-Angel, Emigdio
AU - Ballesteros, Belén
AU - Caicedo, José Manuel
AU - Padilla-Pantoja, Jessica
AU - Leborán, Victor
AU - Sotomayor Torres, Clivia M.
AU - Rivadulla, Francisco
AU - Santiso, José
PY - 2020
Y1 - 2020
N2 - This work describes the growth of thin epitaxial films of the layered perovskite material GdBaCo2O5.5±δ(GBCO) on different single crystal substrates SrTiO3(STO), (LaAlO3)0.3(Sr2TaAlO6)0.7(LSAT) and LaAlO3(LAO) as an approach to study changes in the thermoelectric properties by means of the induced epitaxial strain. In addition to strain changes, the films grow with considerably different preferred orientations and domain microstructures: GBCO films on STO are purelyc-axis oriented (c⊥) with an average 0.18% in-plane tensile strain; GBCO on LSAT is composed of domains with a mixed orientation (c‖andc⊥) with an average 0.71% in-plane compressive strain; while on LAO it isb-axis oriented (c‖) with an average 0.89% in-plane compressive strain. These differences result in important cell volume changes, as well as in the orthorhombicity of thea-bplane of the GBCO structure, which in turn induce a change in the sign and temperature dependence of the thermopower, while the electrical conductivity remains almost unchanged. In general, compressively strained films show negativeSthermopower (n-type) while tensile strained films show a positiveS(p-type) at low temperatures, probing the adaptive nature of the GdBaCo2O5.5±δcompound. These results point to the spontaneous generation of oxygen vacancies to partially accommodate the epitaxial stress as the main cause for this effect.
AB - This work describes the growth of thin epitaxial films of the layered perovskite material GdBaCo2O5.5±δ(GBCO) on different single crystal substrates SrTiO3(STO), (LaAlO3)0.3(Sr2TaAlO6)0.7(LSAT) and LaAlO3(LAO) as an approach to study changes in the thermoelectric properties by means of the induced epitaxial strain. In addition to strain changes, the films grow with considerably different preferred orientations and domain microstructures: GBCO films on STO are purelyc-axis oriented (c⊥) with an average 0.18% in-plane tensile strain; GBCO on LSAT is composed of domains with a mixed orientation (c‖andc⊥) with an average 0.71% in-plane compressive strain; while on LAO it isb-axis oriented (c‖) with an average 0.89% in-plane compressive strain. These differences result in important cell volume changes, as well as in the orthorhombicity of thea-bplane of the GBCO structure, which in turn induce a change in the sign and temperature dependence of the thermopower, while the electrical conductivity remains almost unchanged. In general, compressively strained films show negativeSthermopower (n-type) while tensile strained films show a positiveS(p-type) at low temperatures, probing the adaptive nature of the GdBaCo2O5.5±δcompound. These results point to the spontaneous generation of oxygen vacancies to partially accommodate the epitaxial stress as the main cause for this effect.
U2 - 10.1039/d0ta04781c
DO - 10.1039/d0ta04781c
M3 - Journal article
AN - SCOPUS:85092412436
SN - 2050-7488
VL - 8
SP - 19975
EP - 19983
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 38
ER -