Large Scale Offshore Wake Impact on the Danish Power System

Xiaoli Guo Larsén*, Jana Fischereit, Jianting Du, Patrick Volker, Poul Ejnar Sørensen, Kaushik Das, Matti Juhani Koivisto, Andrea N. Hahmann, Marc Imberger, Søren Ott, Juan Pablo Murcia Leon, Samuel Hawkins, Jake Badger

*Corresponding author for this work

    Research output: Book/ReportReportResearch

    496 Downloads (Orbit)

    Abstract

    This project aims at improving the operation of the Danish powersystem, through building a more accurate wind to power calculationsystem by taking into account of the large wind farm wake effect, aswell as the sea conditions. The obtained results include a comprehensivemodelling system in which key model components are cou-pled,including wind, wave, wake and power balancing. The system usesWRF for atmospheric modelling, with the wind farm wake effectcalculated using the Explicit Wake Parameterization (EWP) and WindFarm Parameterization (Fitch) schemes. The WRF model is coupled tothe wave model SWAN and ocean model ROMS, and provides input tothe power balancing model CORres. This modelling system was builtwith and tested with cases and input data from the North Sea regionand Denmark for power balancing. Though the modelling system canbe applied to any regions. In the future, we envision it to be appliedin larger regions than Denmark, e.g. for all North Europe. Part of themodelling system can and have also been used for multiple purposes.For instance, for offshore forecasting for O&M, our wind and wavecoupled modelling (WRF-SWAN) can provide simultaneous wind andwave parameters. For estimating resource and planning, WRF withEWP and Fitch schemes are being extensively used, where both real andfuture wind farm scenarios are examined. The hindcast from the variouscombinations of these model components can be used to study long terntrend and climatological impact on e.g. wave field, wind field and powersystems.
    Original languageEnglish
    Place of PublicationRisø, Roskilde, Denmark
    PublisherDTU Wind Energy
    Number of pages50
    ISBN (Electronic)978-87-93549-90-6
    Publication statusPublished - 2021
    SeriesDTU Wind Energy E
    Number0222

    Fingerprint

    Dive into the research topics of 'Large Scale Offshore Wake Impact on the Danish Power System'. Together they form a unique fingerprint.

    Cite this