Large Marine Ecosystems and coastal water archetypes implemented in LCIA methods for marine eutrophication and metals ecotoxicity

Research output: Contribution to conferencePoster – Annual report year: 2014Researchpeer-review

Documents

View graph of relations

The marine eutrophication (MEu) and marine ecotoxicity (MEc) indicators in Life Cycle Impact Assessment (LCIA) respectively express the eutrophying impact of nitrogen (N) and the toxic impact of metals emissions to the marine environment. Characterisation Factors (CF) are calculated to translate the emissions into impact potentials. For consistency in the characterisation modelling across impact categories, the same modelling framework was applied including Fate Factors of N or metals (FF), habitat Exposure Factor (XF) in MEu or Bioavailability Factor of metals (BF) in MEc, and Factors for the Effect on biota (EF). In both impact categories there is a need for spatial differentiation according to the receiving ecosystems, and the parameterisation of the characterisation models requires the adoption of suitable spatial units out of the global receiving coastal marine ecosystem. The Large Marine Ecosystems (LME) biogeographical classification system identifies 64 spatial units of coastal marine waters and it was adopted for both MEu and MEc. The applicability of 13 alternative zonation systems was compared before choosing the LME classification. The hydraulic residence time (RT) of the receiving LMEs expressing the system’s flushing through local hydrodynamics is required for the parameterisation of the FF term to estimate the loss of N or metals from the LME through advection. The RT was found in literature for 36% of the LMEs, whereas 4 archetypes were built for the remaining, for which no data was found (47%) or to settle high variability of found sources (17%). The 4 archetypes were defined by the exposure to currents and regional marine circulation, depth and profile of the continental shelf, and stratification. Archetype 1 (high dynamics and exposure) with estimated RT=3 months, Archetype 2 (medium dynamics and exposure) with RT=2 yr, Archetype 3 (low dynamics) with RT=25 yr, and Archetype 4 (very low dynamics, embayed, often stratified) with RT=90 yr. It is assumed that the system dynamics is determining the RT of both N and metals in the photic zone in each LME. The LME classification system was chosen for its data availability, modelling feasibility, and adequacy of size and number of spatial units considering the needs of LCIA. The application of the archetypical RTs was useful for the parameterisation of the fate models. The spatial differentiation of the resulting CFs was found essential to increase the discriminatory power of the models.
Original languageEnglish
Publication date2014
Number of pages1
Publication statusPublished - 2014
EventSETAC Europe 24th Annual Meeting - Basel, Switzerland
Duration: 11 May 201415 May 2014
Conference number: 24

Conference

ConferenceSETAC Europe 24th Annual Meeting
Number24
CountrySwitzerland
CityBasel
Period11/05/201415/05/2014

Bibliographical note

Poster presentation

    Research areas

  • Life-Cycle Assessment, Nutrients, Metals, Spatial

Activities

Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 96897236