Large Eddy Simulation of Wind Turbine Wakes in Prescribed Neutral and Non-Neutral Atmospheric Boundary Layers

Research output: Contribution to journalConference articleResearchpeer-review

2208 Downloads (Pure)

Abstract

Large eddy simulation (LES) of an infinitely long wind farm in a fully developed flow is carried out based on solution of the incompressible Navier-Stokes equations. The wind turbines are modeled as equivalent rotating actuator disks by applying aerodynamic loads on the flow field using tabulated aerodynamic lift and drag coefficients to save computational time. As a substitute to standard wall modeling LES, a ''prescribed mean shear" profile (hereafter called PMS) approach has been implemented and analysed for generating the desired turbulent shear flow. It is applied on Neutral, Stable and Convective atmospheric boundary layers in presence of the -actuator disc represented- wind turbines and qualitatively meaningful results of mean and fluctuating velocity field is obtained. The effect of four different sub-grid scale (SGS) models on the flow structure is investigated and it is seen that subgrid scale modeling (in particular, the Mix-O and Smagorinsky models) improves the accuracy of the simulations. An optimal grid resolution is also proposed for this kind of simulation.
Original languageEnglish
Article number012087
Book seriesJournal of Physics: Conference Series (Online)
Volume555
Number of pages8
ISSN1742-6596
DOIs
Publication statusPublished - 2014
EventThe science of Making Torque from Wind 2012: 4th scientific conference - Universität Oldenburg, Oldenburg, Germany
Duration: 9 Oct 201211 Oct 2012
http://www.forwind.de/makingtorque/Home.html

Conference

ConferenceThe science of Making Torque from Wind 2012
LocationUniversität Oldenburg
CountryGermany
CityOldenburg
Period09/10/201211/10/2012
Internet address

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

Cite this