Landfill methane emission mitigation – How to construct and document a full‐scale biocover system

    Research output: Chapter in Book/Report/Conference proceedingConference abstract in proceedingsResearchpeer-review


    Landfills receiving organic wastes produce biogas (landfill gas – LFG) containing methane (CH4). Landfills are significant sources of methane, which contributes to climate change. As an alternative to gas utilization systems or as a follow‐on technology when a gas utilization system gets non‐cost‐effective, bio‐mitigation systems may be implemented. Bio‐mitigation systems are defined here as systems based on microbial removal processes implemented at landfills to reduce emission of methane (or other harmful substances). In respect to CH4, experiments have documented that a very high methane oxidation rate can be obtained in soils, compost and other materials, high enough to significant reduce the methane emission from landfills. The process has been scaled up by DTU Environment to a full‐scale implemented technology at two Danish landfills. Now the Danish government has decided to establish bio‐mitigation systems at up to 100 closed and old Danish landfills. The presentation will introduce the technology and methodologies for documentation of the gained greenhouse gas mitigation.
    Original languageEnglish
    Title of host publicationAbstract Book - DTU Sustain Conference 2014
    Number of pages1
    Place of PublicationKgs. Lyngby
    PublisherTechnical University of Denmark
    Publication date2014
    Publication statusPublished - 2014
    EventDTU Sustain Conference 2014 - Technical University of Denmark, Lyngby, Denmark
    Duration: 17 Dec 201417 Dec 2014


    ConferenceDTU Sustain Conference 2014
    LocationTechnical University of Denmark
    Internet address


    Dive into the research topics of 'Landfill methane emission mitigation – How to construct and document a full‐scale biocover system'. Together they form a unique fingerprint.

    Cite this