Ladder Variational Autoencoder

Variational autoencoders are powerful models for unsupervised learning. However, deep models with several layers of dependent stochastic variables are difficult to train which limits the improvements obtained using these highly expressive models. We propose a new inference model, the Ladder Variational Autoencoder, that recursively corrects the generative distribution by a data dependent approximate likelihood in a process resembling the recently proposed Ladder Network. We show that this model provides state of the art predictive log-likelihood and tighter log-likelihood lower bound compared to the purely bottom-up inference in layered Variational Autoencoders and other generative models. We provide a detailed analysis of the learned hierarchical latent representation and show that our new inference model is qualitatively different and utilizes a deeper more distributed hierarchy of latent variables. Finally, we observe that batch normalization and deterministic warm-up (gradually turning on the KL-term) are crucial for training variational models with many stochastic layers.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Copenhagen Center for Health Technology, University of Copenhagen, Aalto University
Contributors: Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., Winther, O.
Number of pages: 12
Publication date: 2016

Host publication information
Title of host publication: Advances in Neural Information Processing Systems 29 (NIPS 2016)
Electronic versions: 1602.02282.pdf
Source: PublicationPreSubmission
Source-ID: 130669434
Research output: Chapter in Book/Report/Conference proceeding > Article in proceedings – Annual report year: 2017 > Research > peer-review