Lack of skeletal muscle il-6 affects pyruvate dehydrogenase activity at rest and during prolonged exercise

Anders Gudiksen, Camilla Victoria Lindgren Schwartz, Lærke Bertholdt, Ella Joensen, Jakob G. Knudsen, Henriette Pilegaard

Research output: Contribution to journalJournal articleResearchpeer-review

44 Downloads (Pure)

Abstract

Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH.

Original languageEnglish
Article numbere0156460
JournalPLOS ONE
Volume11
Issue number6
Number of pages17
ISSN1932-6203
DOIs
Publication statusPublished - 1 Jun 2016
Externally publishedYes

Fingerprint Dive into the research topics of 'Lack of skeletal muscle il-6 affects pyruvate dehydrogenase activity at rest and during prolonged exercise'. Together they form a unique fingerprint.

Cite this