Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min⁻¹ applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated by a temperature region in which the transformation was strongly decelerated. The region of limited transformation was more concise and occurred at higher austenite phase fractions and temperatures for higher heating rates. The two-step kinetics was reproduced by kinetics modeling in DICTRA. The model indicates that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate.

General information
Publication status: Published
Organisations: Centre for oil and gas – DTU, Department of Mechanical Engineering, Materials and Surface Engineering
Contributors: Nießen, F., Villa, M., Hald, J., Somers, M. A. J.
Number of pages: 8
Pages: 8-15
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Materials & Design
Volume: 116
ISSN (Print): 0264-1275
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.16 SJR 1.82 SNIP 2.439
Web of Science (2017): Impact factor 4.525
Web of Science (2017): Indexed yes
Original language: English
Keywords: Supermartensitic stainless steels, Phase transformation kinetics, Interface diffusion, Synchrotron radiation, Kinetics modeling, Reversed austenite

Electronic versions:
DOIs:
10.1016/j.matdes.2016.11.076
Source: Findit
Source-ID: 2349264869
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review