Abstract
Background: Intracranial pressure (ICP) monitoring is a core component of neurosurgical diagnostics. With the introduction of telemetric monitoring devices in the last years, ICP monitoring has become feasible in a broader clinical setting including monitoring during full mobilization and at home, where a greater diversity of ICP waveforms are present. The need for identification of these variations, the so-called macro-patterns lasting seconds to minutes-emerges as a potential tool for better understanding the physiological underpinnings of patient symptoms.
Methods: We introduce a new methodology that serves as a foundation for future automatic macro-pattern identification in the ICP signal to comprehensively understand the appearance and distribution of these macro-patterns in the ICP signal and their clinical significance. Specifically, we describe an algorithm based on k-Shape clustering to build a standard library of such macro-patterns.
Results: In total, seven macro-patterns were extracted from the ICP signals. This macro-pattern library may be used as a basis for the classification of new ICP variation distributions based on clinical disease entities.
Conclusions: We provide the starting point for future researchers to use a computational approach to characterize ICP recordings from a wide cohort of disorders.
Methods: We introduce a new methodology that serves as a foundation for future automatic macro-pattern identification in the ICP signal to comprehensively understand the appearance and distribution of these macro-patterns in the ICP signal and their clinical significance. Specifically, we describe an algorithm based on k-Shape clustering to build a standard library of such macro-patterns.
Results: In total, seven macro-patterns were extracted from the ICP signals. This macro-pattern library may be used as a basis for the classification of new ICP variation distributions based on clinical disease entities.
Conclusions: We provide the starting point for future researchers to use a computational approach to characterize ICP recordings from a wide cohort of disorders.
Original language | English |
---|---|
Article number | 12 |
Journal | Fluids and Barriers of the CNS |
Volume | 19 |
Number of pages | 13 |
ISSN | 2045-8118 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- Intracranial pressure
- Macro-pattern
- k-Shape clustering