Isolation and quantification of a 93Mo isotope solution from proton irradiated niobium - DTU Orbit (08/08/2019)

93Mo (4000 y half-life) formed through the 93Nb(p,n)93Mo reaction was isolated from a niobium target foil previously used in a low energy medical cyclotron. 93Mo has identical characteristic x-ray emission and mass as the isomer 93mNb and stable Nb present in the target foil at much higher concentrations. This makes distinction between 93mMo, 93mNb and stable Nb difficult using radiometric or mass spectrometric methods. An anion exchange method in combination with x-ray spectrometry and ICP-MS/OES enabled quantitative isolation of about $0.4 \mu g$ 93mMo (14 kBq) from 93mNb with a separation factor $>10^4$ on a single column. An extraction chromatography column (TEVA) was used to reach an 93mNb/93Mo activity ratio of $<10^{-6}$ and an atom ratio 93mNb/93Mo $<1\%$ making the 93Mo suitable for both radiometric and mass spectrometric testing. 93Mo is the only radioisotope of molybdenum with a long enough half-life suitable for this purpose. Calibration of the 93Mo isotope solution was done through x-ray spectrometry using a characterized BEGe-detector in combination with a 99mTc solution. This is the first reported isolation of a 93Mo solution in the literature and the first time a LSC spectrum of 93Mo is shown.

General information
Publication status: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Radioecology and Tracer Studies
Corresponding author: Roos, P.
Contributors: Roos, P.
Pages: 769-775
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Talanta
Volume: 204
ISSN (Print): 0039-9140
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: 93Mo, 93mNb, Ion-exchange, Molybdenum, Niobium
DOI:
10.1016/j.talanta.2019.06.042
Source: Findit
Source-ID: 2450220662
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review