Inviscid double wake model for stalled airfoils

Research output: Contribution to journalConference articleResearchpeer-review

408 Downloads (Pure)

Abstract

An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge and at the separation point. A calibration of the code through comparison with experiments has been performed using one set of airfoils. A second set of airfoils has been used for the validation of the calibrated model. Predicted aerodynamic forces for a wide range of angles of attack (0 to 90 deg) are in overall good agreement with wind tunnel measurements.
Original languageEnglish
Article number012132
Book seriesJournal of Physics: Conference Series (Online)
Volume524
Number of pages10
ISSN1742-6596
DOIs
Publication statusPublished - 2014
Event5th International Conference on The Science of Making Torque from Wind 2014 - Technical University of Denmark, Copenhagen, Denmark
Duration: 10 Jun 201420 Jun 2014
Conference number: 5
http://indico.conferences.dtu.dk/conferenceDisplay.py?confId=138

Conference

Conference5th International Conference on The Science of Making Torque from Wind 2014
Number5
LocationTechnical University of Denmark
CountryDenmark
CityCopenhagen
Period10/06/201420/06/2014
Internet address

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

Cite this