

A124134


Positive integers n such that Fibonacci(n) = a^2 + b^2, where a, b are integers.


2



1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 85, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122, 123, 125, 127
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

All odd numbers are in this sequence, since the Fibonacci number with index 2m+1 is the sum of the squares of the two Fibonacci numbers with indices m and m+1. Those with even indices ultimately depend on certain Lucas numbers being the sum of two squares (see A124132). Joint work with Kevin O'Bryant and Dennis Eichhorn.
Numbers n such that Fibonacci(n) or Fibonacci(n)/2 is a square are only 0, 1, 2, 3, 6, 12. So a and b must be distinct and nonzero for all values of this sequence except 1, 2, 3, 6, 12.  Altug Alkan, May 04 2016


LINKS

Joerg Arndt, Table of n, a(n) for n = 1..210


FORMULA

Intersection of A000045 and A001481.
A000161(A000045(a(n))) > 0.  Reinhard Zumkeller, Oct 10 2013


EXAMPLE

14 is in the sequence because F_14=377=11^2+16^2. 16 is not in the sequence because F_16=987 is congruent to 3 mod(4) and is thus known to not be such a sum.


MATHEMATICA

Select[Range@ 128, SquaresR[2, Fibonacci@ #] > 0 &] (* Michael De Vlieger, May 04 2016 *)


PROG

(PARI) for(n=1, 10^6, t=fibonacci(n); s=sqrtint(t); forstep(i=s, 1, 1, if(issquare(ti*i), print1(n, ", "); break))) \\ Ralf Stephan, Sep 15 2013
(PARI) is2s(n)={my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); 1; } \\ see A001481
for(n=1, 10^6, if(is2s(fibonacci(n)), print1(n, ", "))); \\ Joerg Arndt, Sep 15 2013
(Haskell)
a124134 n = a124134_list !! (n1)
a124134_list = filter ((> 0) . a000161 . a000045) [1..]
 Reinhard Zumkeller, Oct 10 2013


CROSSREFS

Cf. A124132, A000045, A000161, A001481.
Sequence in context: A018559 A057196 A080637 * A007071 A242482 A085784
Adjacent sequences: A124131 A124132 A124133 * A124135 A124136 A124137


KEYWORD

nonn


AUTHOR

Melvin J. Knight (melknightdr(AT)verizon.net), Nov 30 2006


EXTENSIONS

More terms from Ralf Stephan, Sep 15 2013


STATUS

approved



