Investigation of a Monturaqui Impactite by Means of Bi-Modal X-ray and Neutron Tomography - DTU Orbit (16/08/2019)

Investigation of a Monturaqui Impactite by Means of Bi-Modal X-ray and Neutron Tomography

X-ray and neutron tomography are applied as a bi-modal approach for the 3D characterisation of a Monturaqui impactite formed by shock metamorphism during the impact of an iron meteorite with the target rocks in the Monturaqui crater (Chile). The particular impactite exhibits structural heterogeneities on many length scales: its composition is dominated by silicate-based glassy and crystalline materials with voids and Fe/Ni-metal and oxihydroxides particles generally smaller than 1 mm in diameter. The non-destructive investigation allowed us to apply a novel bi-modal imaging approach that provides a more detailed and quantitative understanding of the structural and chemical composition compared to standard single mode imaging methods, as X-ray and neutron interaction with matter results in different attenuation coefficients with a non-linear relation. The X-ray and neutron data sets have been registered, and used for material segmentation, porosity and metallic content characterization. The bimodal data enabled the segmentation of a large number of different materials, their morphology as well as distribution in the specimen including the quantification of volume fractions. The 3D data revealed an evaporite type of material in the impactite not noticed in previous studies. The present study is exemplary in demonstrating the potential for non-destructive characterisation of key features of complex multi-phase objects such as impactites.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Statistics and Data Analysis, Image Analysis & Computer Graphics, Department of Physics, Neutrons and X-rays for Materials Physics, University of Copenhagen, French Alternative Energies and Atomic Energy Commission, European Spallation Source ESS AB, Technical University of Denmark
Corresponding author: Fedrigo, A.
Number of pages: 24
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Electronic Imaging
Volume: 4
Issue number: 5
Article number: 72
ISSN (Print): 1017-9909
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 1.26 SJR 0.241 SNIP 0.624
Web of Science (2018): Impact factor 0.924
Web of Science (2018): Indexed yes
Original language: English
Keywords: Neutron imaging, X-ray imaging, Multimodal imaging, Bimodal imaging, Computed tomography, Impactite, Monturaqui
Electronic versions:
Jimaging_04_00072_v2.pdf
DOIs:
10.3390/jimaging4050072

Bibliographical note
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Source: FindIt
Source-ID: 2434671940
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review