Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy

J. Alvarez-Marquez*, Luis Colina, R. Marques-Chaves, D. Ceverino , A. Alonso-Herrero, K. Caputi, M. Garcia-Marin, A. Labiano, O. Le Fevre, H. U. Nørgaard-Nielsen, G. Ostlin, P. G. Perez-Gonzalez, J. P. Pye, T. V. Tikkanen, P. P. van der Werf, F. Walter, G. S. Wright

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

19 Downloads (Pure)

Abstract

The James Webb Space Telescope (JWST) will provide deep imaging and spectroscopy for sources at redshifts above 6, covering the entire Epoch of Reionization (EoR, 6 <  z <  10), and enabling the detailed exploration of the nature of the different sources during the first 1 Gyr of the history of the Universe. The Medium Resolution Spectrograph (MRS) of the mid-IR Instrument (MIRI) will be the only instrument on board JWST able to observe the brightest optical emission lines Hα and [OIII]0.5007 μm at redshifts above 7 and 9, respectively, providing key insights into the physical properties of sources during the early phases of the EoR. This paper presents a study of the Hα fluxes predicted by state-of-the-art FIRSTLIGHT cosmological simulations for galaxies at redshifts of 6.5–10.5, and its detectability with MIRI. Deep (40 ks) spectroscopic integrations with MRS will be able to detect (signal-to-noise ratio > 5) EoR sources at redshifts above 7 with intrinsic star formation rates (SFR) of more than 2 M yr−1, and stellar masses above 4–9 × 107 M. These limits cover the upper end of the SFR and stellar mass distribution at those redshifts, representing ∼6% and ∼1% of the predicted FIRSTLIGHT population at the 6.5–7.5 and 7.5–8.5 redshift ranges, respectively. In addition, the paper presents realistic MRS simulated observations of the expected rest-frame optical and near-infrared spectra for some spectroscopically confirmed EoR sources recently detected by ALMA as [OIII]88 μm emitters. The MRS simulated spectra cover a wide range of low metallicities from about 0.2–0.02 Z, and different [OIII]88 μm/[OIII]0.5007 μm line ratios. The simulated 10 ks MRS spectra show S/N in the range of 5–90 for Hβ, [OIII]0.4959,0.5007 μm, Hα and HeI1.083 μm emission lines of the currently highest spectroscopically confirmed EoR (lensed) source MACS1149-JD1 at a redshift of 9.11, independent of metallicity. In addition, deep 40 ksec simulated spectra of the luminous merger candidate B14-65666 at 7.15 shows the MRS capabilities of detecting, or putting strong upper limits on, the weak [NII]0.6584 μm, [SII]0.6717,0.6731 μm, and [SIII]0.9069,0.9532 μm emission lines. These observations will provide the opportunity of deriving accurate metallicities in bright EoR sources using the full range of rest-frame optical emission lines up to 1 μm. In summary, MRS will enable the detailed study of key physical properties such as internal extinction, instantaneous star formation, hardness of the ionizing continuum, and metallicity in bright (intrinsic or lensed) EoR sources.
Original languageEnglish
Article numberA9
JournalAstronomy and Astrophysics
Volume629
Number of pages11
ISSN0004-6361
DOIs
Publication statusPublished - 2019

Keywords

  • Galaxies: high-redshift
  • Galaxies: formation
  • Galaxies: evolution
  • Infrared: galaxies
  • Telescopes

Cite this

Alvarez-Marquez, J., Colina, L., Marques-Chaves, R., Ceverino , D., Alonso-Herrero, A., Caputi, K., ... Wright, G. S. (2019). Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy. Astronomy and Astrophysics, 629, [A9]. https://doi.org/10.1051/0004-6361/201935594
Alvarez-Marquez, J. ; Colina, Luis ; Marques-Chaves, R. ; Ceverino , D. ; Alonso-Herrero, A. ; Caputi, K. ; Garcia-Marin, M. ; Labiano, A. ; Le Fevre, O. ; Nørgaard-Nielsen, H. U. ; Ostlin, G. ; Perez-Gonzalez, P. G. ; Pye, J. P. ; Tikkanen, T. V. ; van der Werf, P. P. ; Walter, F. ; Wright, G. S. / Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy. In: Astronomy and Astrophysics. 2019 ; Vol. 629.
@article{8ce2ed3b904c4b61b8268a9df07a2842,
title = "Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy",
abstract = "The James Webb Space Telescope (JWST) will provide deep imaging and spectroscopy for sources at redshifts above 6, covering the entire Epoch of Reionization (EoR, 6 <  z <  10), and enabling the detailed exploration of the nature of the different sources during the first 1 Gyr of the history of the Universe. The Medium Resolution Spectrograph (MRS) of the mid-IR Instrument (MIRI) will be the only instrument on board JWST able to observe the brightest optical emission lines Hα and [OIII]0.5007 μm at redshifts above 7 and 9, respectively, providing key insights into the physical properties of sources during the early phases of the EoR. This paper presents a study of the Hα fluxes predicted by state-of-the-art FIRSTLIGHT cosmological simulations for galaxies at redshifts of 6.5–10.5, and its detectability with MIRI. Deep (40 ks) spectroscopic integrations with MRS will be able to detect (signal-to-noise ratio > 5) EoR sources at redshifts above 7 with intrinsic star formation rates (SFR) of more than 2 M⊙ yr−1, and stellar masses above 4–9 × 107 M⊙. These limits cover the upper end of the SFR and stellar mass distribution at those redshifts, representing ∼6{\%} and ∼1{\%} of the predicted FIRSTLIGHT population at the 6.5–7.5 and 7.5–8.5 redshift ranges, respectively. In addition, the paper presents realistic MRS simulated observations of the expected rest-frame optical and near-infrared spectra for some spectroscopically confirmed EoR sources recently detected by ALMA as [OIII]88 μm emitters. The MRS simulated spectra cover a wide range of low metallicities from about 0.2–0.02 Z⊙, and different [OIII]88 μm/[OIII]0.5007 μm line ratios. The simulated 10 ks MRS spectra show S/N in the range of 5–90 for Hβ, [OIII]0.4959,0.5007 μm, Hα and HeI1.083 μm emission lines of the currently highest spectroscopically confirmed EoR (lensed) source MACS1149-JD1 at a redshift of 9.11, independent of metallicity. In addition, deep 40 ksec simulated spectra of the luminous merger candidate B14-65666 at 7.15 shows the MRS capabilities of detecting, or putting strong upper limits on, the weak [NII]0.6584 μm, [SII]0.6717,0.6731 μm, and [SIII]0.9069,0.9532 μm emission lines. These observations will provide the opportunity of deriving accurate metallicities in bright EoR sources using the full range of rest-frame optical emission lines up to 1 μm. In summary, MRS will enable the detailed study of key physical properties such as internal extinction, instantaneous star formation, hardness of the ionizing continuum, and metallicity in bright (intrinsic or lensed) EoR sources.",
keywords = "Galaxies: high-redshift, Galaxies: formation, Galaxies: evolution, Infrared: galaxies, Telescopes",
author = "J. Alvarez-Marquez and Luis Colina and R. Marques-Chaves and D. Ceverino and A. Alonso-Herrero and K. Caputi and M. Garcia-Marin and A. Labiano and {Le Fevre}, O. and N{\o}rgaard-Nielsen, {H. U.} and G. Ostlin and Perez-Gonzalez, {P. G.} and Pye, {J. P.} and Tikkanen, {T. V.} and {van der Werf}, {P. P.} and F. Walter and Wright, {G. S.}",
year = "2019",
doi = "10.1051/0004-6361/201935594",
language = "English",
volume = "629",
journal = "Astronomy & Astrophysics",
issn = "0004-6361",
publisher = "E D P Sciences",

}

Alvarez-Marquez, J, Colina, L, Marques-Chaves, R, Ceverino , D, Alonso-Herrero, A, Caputi, K, Garcia-Marin, M, Labiano, A, Le Fevre, O, Nørgaard-Nielsen, HU, Ostlin, G, Perez-Gonzalez, PG, Pye, JP, Tikkanen, TV, van der Werf, PP, Walter, F & Wright, GS 2019, 'Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy', Astronomy and Astrophysics, vol. 629, A9. https://doi.org/10.1051/0004-6361/201935594

Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy. / Alvarez-Marquez, J.; Colina, Luis; Marques-Chaves, R.; Ceverino , D.; Alonso-Herrero, A.; Caputi, K.; Garcia-Marin, M.; Labiano, A.; Le Fevre, O.; Nørgaard-Nielsen, H. U.; Ostlin, G.; Perez-Gonzalez, P. G.; Pye, J. P.; Tikkanen, T. V.; van der Werf, P. P.; Walter, F.; Wright, G. S.

In: Astronomy and Astrophysics, Vol. 629, A9, 2019.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Investigating the physical properties of galaxies in the Epoch of Reionization with MIRI/JWST spectroscopy

AU - Alvarez-Marquez, J.

AU - Colina, Luis

AU - Marques-Chaves, R.

AU - Ceverino , D.

AU - Alonso-Herrero, A.

AU - Caputi, K.

AU - Garcia-Marin, M.

AU - Labiano, A.

AU - Le Fevre, O.

AU - Nørgaard-Nielsen, H. U.

AU - Ostlin, G.

AU - Perez-Gonzalez, P. G.

AU - Pye, J. P.

AU - Tikkanen, T. V.

AU - van der Werf, P. P.

AU - Walter, F.

AU - Wright, G. S.

PY - 2019

Y1 - 2019

N2 - The James Webb Space Telescope (JWST) will provide deep imaging and spectroscopy for sources at redshifts above 6, covering the entire Epoch of Reionization (EoR, 6 <  z <  10), and enabling the detailed exploration of the nature of the different sources during the first 1 Gyr of the history of the Universe. The Medium Resolution Spectrograph (MRS) of the mid-IR Instrument (MIRI) will be the only instrument on board JWST able to observe the brightest optical emission lines Hα and [OIII]0.5007 μm at redshifts above 7 and 9, respectively, providing key insights into the physical properties of sources during the early phases of the EoR. This paper presents a study of the Hα fluxes predicted by state-of-the-art FIRSTLIGHT cosmological simulations for galaxies at redshifts of 6.5–10.5, and its detectability with MIRI. Deep (40 ks) spectroscopic integrations with MRS will be able to detect (signal-to-noise ratio > 5) EoR sources at redshifts above 7 with intrinsic star formation rates (SFR) of more than 2 M⊙ yr−1, and stellar masses above 4–9 × 107 M⊙. These limits cover the upper end of the SFR and stellar mass distribution at those redshifts, representing ∼6% and ∼1% of the predicted FIRSTLIGHT population at the 6.5–7.5 and 7.5–8.5 redshift ranges, respectively. In addition, the paper presents realistic MRS simulated observations of the expected rest-frame optical and near-infrared spectra for some spectroscopically confirmed EoR sources recently detected by ALMA as [OIII]88 μm emitters. The MRS simulated spectra cover a wide range of low metallicities from about 0.2–0.02 Z⊙, and different [OIII]88 μm/[OIII]0.5007 μm line ratios. The simulated 10 ks MRS spectra show S/N in the range of 5–90 for Hβ, [OIII]0.4959,0.5007 μm, Hα and HeI1.083 μm emission lines of the currently highest spectroscopically confirmed EoR (lensed) source MACS1149-JD1 at a redshift of 9.11, independent of metallicity. In addition, deep 40 ksec simulated spectra of the luminous merger candidate B14-65666 at 7.15 shows the MRS capabilities of detecting, or putting strong upper limits on, the weak [NII]0.6584 μm, [SII]0.6717,0.6731 μm, and [SIII]0.9069,0.9532 μm emission lines. These observations will provide the opportunity of deriving accurate metallicities in bright EoR sources using the full range of rest-frame optical emission lines up to 1 μm. In summary, MRS will enable the detailed study of key physical properties such as internal extinction, instantaneous star formation, hardness of the ionizing continuum, and metallicity in bright (intrinsic or lensed) EoR sources.

AB - The James Webb Space Telescope (JWST) will provide deep imaging and spectroscopy for sources at redshifts above 6, covering the entire Epoch of Reionization (EoR, 6 <  z <  10), and enabling the detailed exploration of the nature of the different sources during the first 1 Gyr of the history of the Universe. The Medium Resolution Spectrograph (MRS) of the mid-IR Instrument (MIRI) will be the only instrument on board JWST able to observe the brightest optical emission lines Hα and [OIII]0.5007 μm at redshifts above 7 and 9, respectively, providing key insights into the physical properties of sources during the early phases of the EoR. This paper presents a study of the Hα fluxes predicted by state-of-the-art FIRSTLIGHT cosmological simulations for galaxies at redshifts of 6.5–10.5, and its detectability with MIRI. Deep (40 ks) spectroscopic integrations with MRS will be able to detect (signal-to-noise ratio > 5) EoR sources at redshifts above 7 with intrinsic star formation rates (SFR) of more than 2 M⊙ yr−1, and stellar masses above 4–9 × 107 M⊙. These limits cover the upper end of the SFR and stellar mass distribution at those redshifts, representing ∼6% and ∼1% of the predicted FIRSTLIGHT population at the 6.5–7.5 and 7.5–8.5 redshift ranges, respectively. In addition, the paper presents realistic MRS simulated observations of the expected rest-frame optical and near-infrared spectra for some spectroscopically confirmed EoR sources recently detected by ALMA as [OIII]88 μm emitters. The MRS simulated spectra cover a wide range of low metallicities from about 0.2–0.02 Z⊙, and different [OIII]88 μm/[OIII]0.5007 μm line ratios. The simulated 10 ks MRS spectra show S/N in the range of 5–90 for Hβ, [OIII]0.4959,0.5007 μm, Hα and HeI1.083 μm emission lines of the currently highest spectroscopically confirmed EoR (lensed) source MACS1149-JD1 at a redshift of 9.11, independent of metallicity. In addition, deep 40 ksec simulated spectra of the luminous merger candidate B14-65666 at 7.15 shows the MRS capabilities of detecting, or putting strong upper limits on, the weak [NII]0.6584 μm, [SII]0.6717,0.6731 μm, and [SIII]0.9069,0.9532 μm emission lines. These observations will provide the opportunity of deriving accurate metallicities in bright EoR sources using the full range of rest-frame optical emission lines up to 1 μm. In summary, MRS will enable the detailed study of key physical properties such as internal extinction, instantaneous star formation, hardness of the ionizing continuum, and metallicity in bright (intrinsic or lensed) EoR sources.

KW - Galaxies: high-redshift

KW - Galaxies: formation

KW - Galaxies: evolution

KW - Infrared: galaxies

KW - Telescopes

U2 - 10.1051/0004-6361/201935594

DO - 10.1051/0004-6361/201935594

M3 - Journal article

VL - 629

JO - Astronomy & Astrophysics

JF - Astronomy & Astrophysics

SN - 0004-6361

M1 - A9

ER -