Abstract
We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The methodology is based on a 2D topology optimization formulation based on frequency-domain finite element simulations for E and/or H polarized waves. The goal of the optimization is to maximize color intensity in prescribed direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable color vector can be generated; that complex structures can generate more intense colors than simple layerings; that angle independent colorings can be obtained at the cost of reduced intensity; and that performance and optimized surface topologies are relatively independent on light polarization. © 2013 Optical Society of America
Original language | English |
---|---|
Journal | Optical Society of America. Journal B: Optical Physics |
Volume | 31 |
Issue number | 1 |
Pages (from-to) | 164-174 |
ISSN | 0740-3224 |
DOIs | |
Publication status | Published - 2014 |
Bibliographical note
This paper was published in JOSA B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-31-1-164. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Keywords
- Diffraction gratings
- Multilayers
- Subwavelength structures, nanostructures
- Color
- Visual optics, modeling