Abstract
Interplanetary (IP) shocks drive magnetosphere‐ionosphere (MI) current systems that in turn are associated with ground magnetic perturbations. Recent work has shown that IP shock impact angle plays a significant role in controlling the subsequent geomagnetic activity and magnetic perturbations; for example, highly inclined shocks drive asymmetric MI responses due to interhemispherical asymmetric magnetospheric compressions, while almost head‐on shocks drive more symmetric MI responses. However, there are few observations confirming that inclined shocks drive such asymmetries in the high‐latitude ground magnetic response. We use data from a chain of Antarctic magnetometers, combined with magnetically conjugate stations on the west coast of Greenland, to test these model predictions (Oliveira & Raeder, 2015, https://doi-org.proxy.findit.dtu.dk/10.1002/2015JA021147; Oliveira, 2017, https://doi-org.proxy.findit.dtu.dk/10.1007/s13538-016-0472-x).
Original language | English |
---|---|
Journal | Space Weather |
Volume | 18 |
Issue number | 3 |
ISSN | 1542-7390 |
DOIs | |
Publication status | Published - 2020 |