TY - JOUR
T1 - Interference of some aqueous two-phase system phase-forming components in protein determination by the Bradford method
AU - C. Silvério, Sara
AU - Moreira, Sergio
AU - Milagres, Adriane M.F.
AU - Macedo, Eugénia A.
AU - Teixeira, Jose A.
AU - Mussatto, Solange I.
PY - 2012
Y1 - 2012
N2 - The interference of some specific aqueous two-phase system (ATPS) phase-forming components in bovine serum albumin (BSA) determination by the Bradford method was investigated. For this purpose, calibration curves were obtained for BSA in the presence of different concentrations of salts and polymers. A total of 19 salts [Na2SO4, (NH4)2SO4, MgSO4, LiSO4, Na2HPO4, sodium phosphate buffer (pH 7.0), NaH2PO4, K2HPO4, potassium phosphate buffer (pH 7.0), KH2PO4, C6H8O7, Na3C6H5O7, KCHO2, NaCHO2, NaCO3, NaHCO3, C2H4O2, sodium acetate buffer (pH 4.5), and NaC2H3O2] and 7 polymers [PEG 4000, PEG 8000, PEG 20000, UCON 3900, Ficoll 70000, PES 100000, and PVP 40000] were tested, and each calibration curve was compared with the one obtained for BSA in water. Some concentrations of salts and polymers had considerable effect in the BSA calibration curve. Carbonate salts were responsible for the highest salt interference, whereas citric and acetic acids did not produce interference even in the maximum concentration level tested (5 wt%). Among the polymers, UCON gave the highest interference, whereas Ficoll did not produce interference when used in concentrations up to 10 wt%. It was concluded that a convenient dilution of the samples prior to the protein quantification is needed to ensure no significant interference from ATPS phase-forming constituents.
AB - The interference of some specific aqueous two-phase system (ATPS) phase-forming components in bovine serum albumin (BSA) determination by the Bradford method was investigated. For this purpose, calibration curves were obtained for BSA in the presence of different concentrations of salts and polymers. A total of 19 salts [Na2SO4, (NH4)2SO4, MgSO4, LiSO4, Na2HPO4, sodium phosphate buffer (pH 7.0), NaH2PO4, K2HPO4, potassium phosphate buffer (pH 7.0), KH2PO4, C6H8O7, Na3C6H5O7, KCHO2, NaCHO2, NaCO3, NaHCO3, C2H4O2, sodium acetate buffer (pH 4.5), and NaC2H3O2] and 7 polymers [PEG 4000, PEG 8000, PEG 20000, UCON 3900, Ficoll 70000, PES 100000, and PVP 40000] were tested, and each calibration curve was compared with the one obtained for BSA in water. Some concentrations of salts and polymers had considerable effect in the BSA calibration curve. Carbonate salts were responsible for the highest salt interference, whereas citric and acetic acids did not produce interference even in the maximum concentration level tested (5 wt%). Among the polymers, UCON gave the highest interference, whereas Ficoll did not produce interference when used in concentrations up to 10 wt%. It was concluded that a convenient dilution of the samples prior to the protein quantification is needed to ensure no significant interference from ATPS phase-forming constituents.
U2 - 10.1016/j.ab.2011.12.020
DO - 10.1016/j.ab.2011.12.020
M3 - Journal article
SN - 0003-2697
VL - 421
SP - 719
EP - 724
JO - Analytical Biochemistry
JF - Analytical Biochemistry
IS - 2
ER -