Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

Gerhard Schunk, Ulrich Vogl, Dmitry V. Strekalov, Michael Förtsch, Florian Sedlmeir, Harald G L Schwefel, Manuela Göbelt, Silke Christiansen, Gerd Leuchs, Christoph Marquardt

Research output: Contribution to journalJournal articleResearchpeer-review

484 Downloads (Pure)

Abstract

Quantum information technology strongly relies on the coupling of optical photons with narrowband quantum systems, such as quantum dots, color centers, and atomic systems. This coupling requires matching the optical wavelength and bandwidth to the desired system, which presents a considerable problem for most available sources of quantum light. Here we demonstrate the coupling of alkali dipole transitions with a tunable source of photon pairs. Our source is based on spontaneous parametric downconversion in a triply resonant whispering gallery mode resonator. For this, we have developed novel wavelength-tuning mechanisms that allow a coarse tuning to either the cesium or rubidium wavelength, with subsequent continuous fine-tuning to the desired transition. As a demonstration of the functionality of the source, we performed a heralded single-photon measurement of the atomic decay. We present a major advance in controlling the spontaneous downconversion process, which makes our bright source of heralded single photons now compatible with a plethora of narrowband resonant systems.
Original languageEnglish
JournalOptica
Volume2
Issue number9
Pages (from-to)773-778
Number of pages6
ISSN2334-2536
DOIs
Publication statusPublished - 2015

Fingerprint Dive into the research topics of 'Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source'. Together they form a unique fingerprint.

Cite this