Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants

Kristian Rost Albert, Teis Nørgaard Mikkelsen, Anders Michelsen, Helge Ro-Poulsen, Leon Gareth van der Linden

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    Increased temperature, atmospheric CO2 and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO2 (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem. Photosynthetic capacity was evaluated using A/Ci curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PItotal, which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test. The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO2 and prolonged drought generally down-regulated Jmax, Vcmax and PItotal. Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass. Warming effects acted indirectly to improve early season Jmax, Vcmax and PItotal. The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T × CO2, D × CO2 and T × D × CO2 on photosynthetic capacity and PSII performance. The impact on the O–J, J–I and I–P phases which determine the response of PItotal are discussed. The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of Vcmax, Jmax and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions. This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.
    Original languageEnglish
    JournalJournal of Plant Physiology
    Volume168
    Issue number13
    Pages (from-to)1550-1561
    ISSN0176-1617
    DOIs
    Publication statusPublished - 2011

    Keywords

    • Environment and climate

    Fingerprint Dive into the research topics of 'Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants'. Together they form a unique fingerprint.

    Cite this