Intensification of β-poly(l-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase

Weifeng Cao, Jianquan Luo, Juan Zhao, Changsheng Qiao, Luhui Ding, Benkun Qi, Yi Su, Yinhua Wan

Research output: Contribution to journalJournal articleResearchpeer-review

284 Downloads (Pure)


β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l−1 h−1. Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.
Original languageEnglish
JournalJournal of Industrial Microbiology and Biotechnology
Issue number7
Pages (from-to)1073-1080
Publication statusPublished - 2012
Externally publishedYes


Dive into the research topics of 'Intensification of β-poly(l-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase'. Together they form a unique fingerprint.

Cite this