Abstract
Decentral booster heat pumps (BHPs) integrated in ultra-low temperature district heating (ULTDH) systems are deemed a sustainable solution for low-carbon building systems. The performance of BHPs is critical for the implementation of ULTDH systems. In this study, we experimentally investigate the effect of refrigerant charge on temperature, pressure, system coefficient of performance (COP), and heating capacity to evaluate the operability and sensitivity of ULTDH. A performance-guaranteed range of refrigerant charge is proposed to ensure the feasibility of the system. We also analyse the component-level exergy destruction and the system-level exergetic efficiency of a BHP prototype. The exergetic efficiencies range from 24.9 % to 33.4 % under operational conditions for ULTDH. The condenser and evaporator's exergy destruction is influenced by the temperature profiles on both sides, suggesting the potential to improve BHP performance by tailoring operating parameters. Additionally, the return water temperature significantly affects the system COP when the domestic hot water supply temperature is fixed. Within the allowable range of return water temperature, BHP operation with high evaporator outlet water temperature can improve the overall efficiency of the ULTDH system.
Original language | English |
---|---|
Article number | 113516 |
Journal | Energy and Buildings |
Volume | 298 |
Number of pages | 14 |
ISSN | 0378-7788 |
DOIs | |
Publication status | Published - 2023 |
Keywords
- Booster heat pump
- COP
- District heating
- Domestic hot water
- Exergy analysis