
This work proposes an integrated model-based framework for chemical product design and evaluation based on which the software, VPPD-Lab (The Virtual Product-Process Design Laboratory) has been developed. The framework allows the following options: (1) design a product using design templates, such as, single molecule products, formulated products, blended products, emulsified products and devices; (2) analyze the product by performing virtual experiments (product property and performance calculations); (3) create and add new product property and product performance models; (4) create new product design templates when the desired template is not available. The product design templates follow the same common steps in the workflow for a product type but have options to employ product specific property models, data and calculation routines, if necessary. This paper highlights the application of the templates for three case studies: (i) the design of a refrigeration cycle, (ii) a mixture/blend design problem involving lubricant design and (iii) a tailor-made product design of jet-fuels (blended chemical products).

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS
Contributors: Kalakul, S., Cignitti, S., Zhang, L., Gani, R.
Publication date: 2016

Host publication information
Title of host publication: Proceedings of the 26 European Symposium on Computer Aided Process Engineering - ESCAPE 26
Publisher: Elsevier
ISBN (Print): 978-0-444-63428-3
Keywords: Chemical product design, Blended product, Refrigeration cycle
DOI: 10.1016/B978-0-444-63428-3.50395-7
Source: PublicationPreSubmission
Source ID: 124927875
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2016 › Research › peer-review