Integrated Bidding and Operating Strategies for Wind-Storage Systems

Due to their flexible charging and discharging capabilities, energy storage systems (ESS) are considered a promising complement to wind farms (WFs) participating in electricity markets. This paper presents integrated day-ahead bidding and real-time operation strategies for a wind-storage system to perform arbitrage and to alleviate wind power deviations from day-ahead contracts. The strategy is developed with two-price balancing markets in mind. A modified gradient descent algorithm is designed to solve this nonlinear problem. A number of case studies validate the computational efficiency and optimality of the algorithm. Compared to the existing strategies, the proposed strategies yield increased economic profit, regardless of the temporal dependence of wind power forecasting errors.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Department of Electrical Engineering, Center for Electric Power and Energy, Energy Analytics and Markets, Tsinghua University
Contributors: Ding, H., Pinson, P., Hu, Z., Song, Y.
Pages: 163-172
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Sustainable Energy
Volume: 7
Issue number: 1
ISSN (Print): 1949-3029
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 7.8 SJR 2.368 SNIP 2.952
Web of Science (2016): Impact factor 4.909
Web of Science (2016): Indexed yes
Original language: English
Keywords: Power, Energy and Industry Applications, Bidding strategy, electricity markets, Electricity supply industry, Energy storage, energy storage system (ESS), Optimization, Probabilistic logic, real-time operation, Real-time systems, wind farm (WF), Wind forecasting, Wind power generation
DOIs:
10.1109/TSTE.2015.2472576
Source: FindIt
Source ID: 276922015
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review