Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli

Kevin W George, Mitchell Thompson, Joonhoon Kim, Edward E K Baidoo, George Wang, Veronica Teixeira Benites, Christopher J Petzold, Leanne Jade G Chan, Suzan Yilmaz, Petri Turhanen, Paul D Adams, Jay D Keasling, Taek Soon Lee*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

203 Downloads (Pure)


Isopentenyl pyrophosphate (IPP) toxicity presents a challenge in engineered microbial systems since its formation is unavoidable in terpene biosynthesis. In this work, we develop an experimental platform to study IPP toxicity in isoprenol-producing Escherichia coli. We first characterize the physiological response to IPP accumulation, demonstrating that elevated IPP levels are linked to growth inhibition, reduced cell viability, and plasmid instability. We show that IPP toxicity selects for pathway "breakage", using proteomics to identify a reduction in phosphomevalonate kinase (PMK) as a probable recovery mechanism. Next, using multi-omics data, we demonstrate that endogenous E. coli metabolism is globally impacted by IPP accumulation, which slows nutrient uptake, decreases ATP levels, and perturbs nucleotide metabolism. We also observe the extracellular accumulation of IPP and present preliminary evidence that IPP can be transported by E. coli, findings that might be broadly relevant for the study of isoprenoid biosynthesis. Finally, we discover that IPP accumulation leads to the formation of ApppI, a nucleotide analog of IPP that may contribute to observed toxicity phenotypes. This comprehensive assessment of IPP stress suggests potential strategies for the alleviation of prenyl diphosphate toxicity and highlights possible engineering targets for improved IPP flux and high titer isoprenoid production.
Original languageEnglish
JournalMetabolic Engineering
Pages (from-to)60-72
Number of pages13
Publication statusPublished - 2018


  • ApppI
  • IPP toxicity
  • Isopentenyl pyrophosphate (IPP)
  • Isoprenol
  • Mevalonate pathway
  • Multi-omics

Fingerprint Dive into the research topics of 'Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli'. Together they form a unique fingerprint.

Cite this