Abstract
In organic-based electronics, interfacial properties have a profound impact on device performance. The lineup of energy levels is usually dependent on interface dipoles, which may arise from charge transfer reactions. In many applications, metal-organic junctions are prepared under ambient conditions, where direct overlap of the organic pi system from the metal bands is prevented due to presence of oxides and/or hydrocarbons. We present direct experimental and theoretical evidence showing that the interface energetic for such systems is governed by exchange of an integer amount of electrons.
Original language | English |
---|---|
Journal | Applied Physics Letters |
Volume | 92 |
Issue number | 16 |
Pages (from-to) | 163302 |
ISSN | 0003-6951 |
DOIs | |
Publication status | Published - 2008 |
Bibliographical note
Copyright (2008) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Keywords
- TRANSPARENT
- ORGANIC INTERFACES
- ENERGY-LEVEL ALIGNMENT