Intact stability analysis of dead ship conditions using FORM

The IMO Weather Criterion has proven to be the governing stability criteria regarding minimum GM for e.g. small ferries and large passenger ships. The formulation of the Weather Criterion is based on some empirical relations derived many years ago for vessels not necessarily representative for current new buildings with large superstructures. Thus it seems reasonable to investigate the possibility of capsizing in beam sea under the joint action of waves and wind using direct time domain simulations. This has already been done in several studies. Here it is combined with the First Order Reliability Method (FORM) to define possible combined critical wave and wind scenarios leading to capsize and corresponding probability of capsize. The FORM results for a fictitious vessel are compared with Monte Carlo simulation and good agreement is found at a much lesser computational effort. Finally, the results for an existing small ferry will be discussed in the light of the current weather criterion.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering, Lloyd's Register EMEA
Pages: 167-176
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Ship Research
Volume: 61
Issue number: 3
ISSN (Print): 0022-4502
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.59 SJR 1.131 SNIP 1.493
Web of Science (2017): Impact factor 1.441
Web of Science (2017): Indexed yes
Original language: English
Keywords: Weather criteria, Wind loads, Wave loads, FORM, Capsize, Design load scenarios
Electronic versions:
4_93_Intact_stability_analysis_of_dead_ship_conditions_using_FORM_2_.pdf
DOIs:
10.5957/JOSR.170005
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review