In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates - DTU Orbit (03/10/2019)

In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

We have investigated the Ga and Sn content dependence of the crystallinity and electrical properties of Ga-doped Ge1-xSnx layers that are heteroepitaxially grown on Ge(001) substrates. The doping of Ga to levels as high as the solubility limit of Ga at the growth temperature leads to the introduction of dislocations, due to the increase in the strain of the Ge1-xSnx layers. We achieved the growth of a fully strained Ge0.922Sn0.078 layer on Ge with a Ga concentration of 5.5×10¹⁹/cm³ without any dislocations and stacking faults. The resistivity of the Ga-doped Ge1-xSnx layer decreased as the Sn content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge1-xSnx epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge0.950Sn0.050 layer annealed at 600°C for 1min is 3.6 times less than that of the Ga-doped Ge/Ge sample.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Nagoya University, Interuniversitair Micro-Elektronica Centrum, Capres A/S
Pages: 3206-3210
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Thin Solid Films
Volume: 520
Issue number: 8
ISSN (Print): 0040-6090
Ratings:
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.86 SJR 0.897 SNIP 1.147
Web of Science (2012): Impact factor 1.604
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Original language: English
Keywords: Epitaxial growth, Gallium, Germanium, Tin, Impurity doping
DOIs:
10.1016/j.tsf.2011.10.084
Source: orbit
Source ID: 318979
Research output: Contribution to journal → Journal article – Annual report year: 2012 → Research → peer-review