Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR

F. Hatzack, F. Hübel, W. Zhang, P.E. Hansen, Søren Kjærsgård Rasmussen

    Research output: Contribution to journalJournal articleResearchpeer-review


    Inositolphosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P(6)] as a reference; Co-inciding retention times indicated the presence of phytate, D/L-Ins(1,2,3,4,5)P(5), Ins(1,2,3,4,6)P(6), D/L-(1,2,4,5,6)P(5), D/L-(1,2,3,4)P(4), D/L-Ins(1,2,5,6)P(4) and D/L-Ins(1,4,5,6)P(4) in PLP1B mutants as well as the parent variety. In grain extracts from mutant lines PLP1A, PLP2A and PLP3A unusual accumulations of D/L-Ins(1,3,4,5)P(4) were observed whereas phytate and the above-mentioned inositol phosphates were present in relatively small amounts. Assignment of D/L-Ins(1,3,4,5)P(4) was corroborated by precise co-chromatography with a commercial Ins(1,3,4,5)P(4) standard and by NMR spectroscopy. Analysis of inositol phosphates during grain development revealed accumulation of phytate and D/L-Ins(1,3,4,5)P(4), which suggested the tetrakisphosphate compound to be an intermediate of phytate synthesis. This assumption was strengthened further by phytate degradation assays showing that D/L-Ins(1,3,4,5)P(4) did not belong to the spectrum of degradation products generated by endogenous phytase activity. Metabolic scenarios leading to accumulation of D/L-Ins(1,3,4,5)P(4) in barley low-phytate mutants are discussed.
    Original languageEnglish
    JournalBiochemical Journal
    Pages (from-to)473-480
    Publication statusPublished - 2001


    Dive into the research topics of 'Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR'. Together they form a unique fingerprint.

    Cite this