Abstract
Sustainable H2O2 synthesis and residual H2O2 removal are key challenges to the treatment of recalcitrant wastewater using Fenton processes. In this study, an innovative bioelectrochemical system was developed to meet the challenges by alternate switching between microbial electrolysis cell (MEC) and microbial fuel cell (MFC) mode of operation. In the MEC mode, H2O2 was produced and then reacted with Fenton’s reagent (Fe II) to form hydroxyradical. When the system was switched to MFC mode, the unused H2O2 as residual is removed at the cathode as electron acceptor. For wastewater containing 50 mg L-1 methylene blue (MB), complete decolorization and mineralization was achieved in the MEC mode with apparent first order rate constants of 0.43 and 0.22 h-1, respectively. After switching the system to the MFC mode, unused H2O2 at concentration of 180 mg L-1 was removed. The removal rate was 4.61 mg L-1 h-1 while maximum current density of 0.49 A m-2 was generated. The MB degradation and removal of unused H2O2 were affected by different operational parameters such as external resistance, cathode pH and initial MB concentration. Furthermore, stack operation greatly improved the system performance. This study for the first time demonstrated an efficient and cost-effective bioelectrochemical system for H2O2 generation, residual removal and treatment of recalcitrant pollutants.
Original language | English |
---|---|
Publication date | 2016 |
Number of pages | 1 |
Publication status | Published - 2016 |
Event | Sustain-ATV Conference 2016: Creating Technology for a Sustainable Society - Technical University of Denmark, Kgs. Lyngby, Denmark Duration: 30 Nov 2016 → 30 Nov 2016 http://www.sustain.dtu.dk/about/sustain-2016 |
Conference
Conference | Sustain-ATV Conference 2016 |
---|---|
Location | Technical University of Denmark |
Country/Territory | Denmark |
City | Kgs. Lyngby |
Period | 30/11/2016 → 30/11/2016 |
Internet address |