Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones - DTU Orbit (17/08/2019)

To enable affordable detection and diagnostic, there is a need for low-cost and mass producible miniaturized sensing platforms. We present a fully polymeric microfluidic lab-on-a-chip device with integrated gold (Au)-capped nanocones for sensing applications based on surface-enhanced Raman spectroscopy (SERS). All base components of the device were fabricated via injection molding (IM) and can be easily integrated using ultrasonic welding. The SERS sensor array, embedded in the bottom of a fluidic channel, was created by evaporating Au onto IM nanocone structures, resulting in densely packed Au-capped SERS active nanostructures. Using a Raman active model analyte, trans-1,2-bis-(4-pyridyl)-ethylene, we found a surface-averaged SERS enhancement factor of \(\sim 5 \times 10^6 \) with a relative standard deviation of 14% over the sensor area (2 \times 2 \text{ mm}^2), and a 18% signal variation among substrates. This reproducible fabrication method is cost-effective, less time consuming, and allows mass production of fully integrated polymeric, microfluidic systems with embedded high-density and high-aspect ratio SERS sensor.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Optofluidics, Polymer Micro & Nano Engineering
Contributors: Viehrig, M., Thilsted, A. H., Matteucci, M., Wu, K., Catak, D., Schmidt, M. S., Zor, K., Boisen, A.
Pages: 37417-37425
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: ACS Applied Materials and Interfaces
Volume: 10
Issue number: 43
ISSN (Print): 1944-8244
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 8.69 SJR 2.596 SNIP 1.539
Web of Science (2018): Impact factor 8.456
Web of Science (2018): Indexed yes
Original language: English
Keywords: SERS, SERS substrates, Chemical sensing, Lab-on-a-chip, Microfluidics, Plasmonic, Polymer injection molding
DOIs: 10.1021/acsami.8b13424
Source: FindIt
Source-ID: 2439886951
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review