Injection molded polymeric hard X-ray lenses - DTU Orbit (04/11/2019)

Injection molded polymeric hard X-ray lenses

A novel and economical approach for fabricating compound refractive lenses for the purpose of focusing hard X-rays is described. A silicon master was manufactured by UV-lithography and deep reactive ion etching (DRIE). Sacrificial structures were utilized, which enabled accurate control of the etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon energies of 17 keV. A 55 µm long line focus with a minimal waist of 770 nm (FWHM) and a total lens transmittance of 32% were measured. Due to its suitability for cheap mass production, this highly efficient optics may find widespread use in hard X-ray instruments.

General information

Publication status: Published
Organisations: DTU Danchip, Neutrons and X-rays for Materials Physics, Department of Physics, Experimental Surface and Nanomaterials Physics, Department of Micro- and Nanotechnology, Silicon Microtechnology
Pages: 2804-2811
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Optical Materials Express
Volume: 5
Issue number: 12
ISSN (Print): 2159-3930
Ratings:
Scopus rating (2015): CiteScore 3.07 SJR 1.34 SNIP 1.335
Web of Science (2015): Impact factor 2.657
Web of Science (2015): Indexed yes
Original language: English
Electronic versions:
ome_5_12_2804.pdf
DOIs:
10.1364/OME.5.002804
Source: PublicationPreSubmission
Source ID: 117920832
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review