TY - JOUR
T1 - Initial scalar lithospheric magnetic anomaly map of China and surrounding regions derived from CSES satellite data
AU - Wang, Jie
AU - Shen, Xuhui
AU - Yang , Yanyan
AU - Zhima, Zeren
AU - Hulot, Gauthier
AU - Olsen, Nils
AU - Zhou, Bin
AU - Magnes , Werner
AU - Santis , Angelo De
AU - Huang, JianPing
AU - Guo, Feng
AU - Liu, WenLong
AU - Yo, JingBo
PY - 2021
Y1 - 2021
N2 - The China Seismo-Electromagnetic Satellite (CSES), China’s first satellite to measure geophysical fields with scientific goals in both space and solid earth physics, was launched successfully in February 2018. It carries high-precision magnetometers to measure the geomagnetic field. In this study, the CSES magnetic data were used to extract the signal of the lithospheric magnetic field caused by magnetized rocks in the crust and uppermost mantle. First, an along-track analysis of the CSES magnetic data was undertaken near the Bangui magnetic anomaly in central Africa and the Tarim magnetic anomaly in China, demonstrating that the CSES magnetic data are indeed sensitive to the lithospheric magnetic anomaly field. Then a lithospheric magnetic anomaly map over China and surrounding regions was derived. This map is consistent with the lithospheric part of the CHAOS-7 model. In particular, it clearly reveals four major magnetic anomalies containing long-wavelength signals at the altitude of low-earth-orbiting satellites. Three magnetic highs are located over the Tarim, Sichuan and Songliao basin, the origins of which could be related to large-scale tectonic-magmatic activities during geological history. A prominent magnetic low is otherwise found in the southern Himalayan-Tibetan plateau, possibly caused by the shallow Curie depth in this region. To further improve the precision of the lithospheric magnetic field model, more detailed data processing and multi-source data merging are needed.
AB - The China Seismo-Electromagnetic Satellite (CSES), China’s first satellite to measure geophysical fields with scientific goals in both space and solid earth physics, was launched successfully in February 2018. It carries high-precision magnetometers to measure the geomagnetic field. In this study, the CSES magnetic data were used to extract the signal of the lithospheric magnetic field caused by magnetized rocks in the crust and uppermost mantle. First, an along-track analysis of the CSES magnetic data was undertaken near the Bangui magnetic anomaly in central Africa and the Tarim magnetic anomaly in China, demonstrating that the CSES magnetic data are indeed sensitive to the lithospheric magnetic anomaly field. Then a lithospheric magnetic anomaly map over China and surrounding regions was derived. This map is consistent with the lithospheric part of the CHAOS-7 model. In particular, it clearly reveals four major magnetic anomalies containing long-wavelength signals at the altitude of low-earth-orbiting satellites. Three magnetic highs are located over the Tarim, Sichuan and Songliao basin, the origins of which could be related to large-scale tectonic-magmatic activities during geological history. A prominent magnetic low is otherwise found in the southern Himalayan-Tibetan plateau, possibly caused by the shallow Curie depth in this region. To further improve the precision of the lithospheric magnetic field model, more detailed data processing and multi-source data merging are needed.
U2 - 10.1007/s11431-020-1727-0
DO - 10.1007/s11431-020-1727-0
M3 - Journal article
SN - 1674-7321
VL - 64
SP - 1118
EP - 1126
JO - Science China Technological Sciences
JF - Science China Technological Sciences
IS - 5
ER -