Infrared spectroscopy of physisorbed and chemisorbed N-2 in the Pt(111)(3x3)N-2 structure

Using infrared spectroscopy and low electron energy diffraction, we have investigated the adsorption of N-2, at 30 K, on the Pt(111) and the Pt(111)(1x1)H surfaces. At monolayer coverage, N-2 orders in commensurate (3x3) structures on both surfaces, and we propose that the unit cells contain four molecules in each case. The infrared spectra reveal that N-2 exclusively physisorbs on the Pt(111)(1x1)H surface, while both physisorbed and chemisorbed N-2 is detected on the Pt(111) surface. Physisorbed N-2 is the majority species in the latter case, and the two adsorption states show an almost identical uptake behavior, which indicates that they are intrinsic constituents of the growing (3x3) N-2 islands. An analysis of the infrared absorbance data, based on a simple scaling concept suggested by density functional theory calculations, supports a model in which the (3x3) unit cell contains one chemisorbed molecule in end-on atop configuration and three physisorbed molecules. We note that a classic "pinwheel" structure on a hexagonal lattice, with the end-on chemisorbed N2 molecules acting as "pins," is compatible with this composition.

General information
Publication status: Published
Organisations: Department of Physics, Department of Applied Engineering Design and Production
Contributors: Gustafsson, K., Karlberg, G., Andersson, S.
Pages: 194708
Publication date: 2007
Peer-reviewed: Yes

Publication information
Journal: Journal of Chemical Physics
Volume: 127
Issue number: 19
ISSN (Print): 0021-9606
Scopus rating (2007): SJR 2.245 SNIP 1.137
Web of Science (2007): Indexed yes
Original language: English
Keywords: PT(111), TOTAL-ENERGY CALCULATIONS, DEFECT SITES, ADSORPTION, SURFACES

Electronic versions:
Karl.pdf
DOIs: 10.1063/1.2804869
URLs: http://link.aip.org/link/JCPSA6/v127/i19/p194708/s1

Bibliographical note
Copyright (2007) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Source: orbit
Source ID: 214412
Research output: Contribution to journal › Journal article – Annual report year: 2007 › Research › peer-review