Influence of surface losses and the self-pumping effect on current-voltage characteristics of a long Josephson junction

A.L. Pankratov, A.S. Sobolev, V.P. Koshelets, Jesper Mygind

Research output: Contribution to journalJournal articleResearchpeer-review

275 Downloads (Pure)

Abstract

We have numerically investigated the dynamics of a long linear Josephson tunnel junction with overlap geometry. Biased by a direct current (dc) and an applied dc magnetic field, the junction has important applications as tunable high frequency oscillator [flux-flow oscillator (FFO)] in the millimeter and submillimeter range. The study is performed in the frame of a modified sine-Gordon model, which includes surface losses, self-pumping effect, and in an empirical way the superconducting gap. The electromagnetic coupling to the environment is modeled by a simple resistor-capacitor load (RC load) placed at both ends of the FFO. In our model, the damping parameter depends both on the spatial coordinate and on the amplitude of the ac voltage. In order to find the dc current-voltage curves, the damping parameter has to be calculated self-consistently by successive approximations and time integration of the perturbed sine-Gordon equation. The modified model gives better qualitative agreement with experimental results than the conventional perturbed sine-Gordon model.
Original languageEnglish
JournalPhysical Review B Condensed Matter
Volume75
Issue number18
Pages (from-to)184516
ISSN0163-1829
DOIs
Publication statusPublished - 2007

Bibliographical note

Copyright (2007) American Physical Society

Keywords

  • FLUX-FLOW OSCILLATORS
  • RADIATION LINEWIDTH
  • PHASE-LOCKING
  • MILLIMETER
  • SUPERCONDUCTING INTEGRATED RECEIVER
  • SUBMILLIMETER WAVE REGION
  • MICROWAVE FIELDS

Cite this