TY - JOUR
T1 - Influence of sodium-based activators and water content on the fresh and hardened properties of metakaolin geopolymers
AU - Segura, Isabel Pol
AU - Jensen, Peter Arendt
AU - Damø, Anne Juul
AU - Ranjbar, Navid
AU - Jensen, Lars Skaarup
AU - Canut, Mariana
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022
Y1 - 2022
N2 - Several studies explore optimal molar oxide ratios for metakaolin geopolymer production. However, there is not a consensus on the optimal mix, and within similar range large differences in compressive strength are reported, and consequently in the overall performance. Hence, the present work selects a specific molar oxide ratio that leads to strengths above 30 MPa (SiO2/Al2O3 ratio of 3.19, a Na2O/Al2O3 of 1.00, and a water-to-solids ratio of 0.52), and investigates the individual effect of the sodium-based activators (NaOH and Na2SiO3) and the water content on fresh and hardened properties of metakaolin geopolymers. The tested properties include the rheology, setting time, mass loss, shrinkage, density and compressive strength. The test results show that an increase of water content (water-to-solids > 0.52) and increase of NaOH (Na2O/Al2O3 > 1.03) have the largest impact, showing a detrimental effect on both fresh and hardened properties. Moreover, the best results are obtained when using molar ratios of SiO2/Al2O3 at 3.14, Na2O/Al2O3 at 0.97 and a water-to-solids ratio of 0.51, which is within the range of optimum molar ratios from previous studies. The tests are further supplemented by Thermogravimetric analysis/Differential scanning calorimetry (TGA/DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD).
AB - Several studies explore optimal molar oxide ratios for metakaolin geopolymer production. However, there is not a consensus on the optimal mix, and within similar range large differences in compressive strength are reported, and consequently in the overall performance. Hence, the present work selects a specific molar oxide ratio that leads to strengths above 30 MPa (SiO2/Al2O3 ratio of 3.19, a Na2O/Al2O3 of 1.00, and a water-to-solids ratio of 0.52), and investigates the individual effect of the sodium-based activators (NaOH and Na2SiO3) and the water content on fresh and hardened properties of metakaolin geopolymers. The tested properties include the rheology, setting time, mass loss, shrinkage, density and compressive strength. The test results show that an increase of water content (water-to-solids > 0.52) and increase of NaOH (Na2O/Al2O3 > 1.03) have the largest impact, showing a detrimental effect on both fresh and hardened properties. Moreover, the best results are obtained when using molar ratios of SiO2/Al2O3 at 3.14, Na2O/Al2O3 at 0.97 and a water-to-solids ratio of 0.51, which is within the range of optimum molar ratios from previous studies. The tests are further supplemented by Thermogravimetric analysis/Differential scanning calorimetry (TGA/DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD).
KW - Compressive strength
KW - Density
KW - Metakaolin geopolymer
KW - Rheology
KW - Setting
KW - Shrinkage
U2 - 10.1007/s42452-022-05167-w
DO - 10.1007/s42452-022-05167-w
M3 - Journal article
AN - SCOPUS:85139094761
SN - 2523-3971
VL - 4
JO - SN Applied Sciences
JF - SN Applied Sciences
IS - 10
M1 - 283
ER -