Influence of salt on the solution dynamics of a phosphorylcholine-based polyzwitterion

Research output: Contribution to journalJournal article – Annual report year: 2017Researchpeer-review

Without internal affiliation


  • Proof

    724 KB, PDF document


  • Author: Zhang, Zhenyu J.

    University of Sheffield, United Kingdom

  • Author: Jeppe Madsen, Peter

    University of Sheffield

  • Author: Warren, Nicholas J.

    University of Sheffield, United Kingdom

  • Author: Mears, Matthew

    University of Sheffield, United Kingdom

  • Author: Leggett, Graham J.

    University of Sheffield, United Kingdom

  • Author: Lewis, Andrew L.

    Biocompatibles UK Ltd., United Kingdom

  • Author: Geoghegan, Mark

    University of Sheffield, United Kingdom

View graph of relations

The diffusion of a polyzwitterion, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), in aqueous solution containing different alkali halides was studied by fluorescence correlation spectroscopy at single molecule level. It was found that the halide anion has a greater effect on the radius of zwitterionic PMPC molecules than alkali cations, which is due to the mechanism by which PMPC molecules interact with the surrounding hydrogen bond network of water molecules and adsorbed ions. With the addition of salt, the size of PMPC remains constant while its diffusion coefficient is reduced slightly, although larger cations (e.g. K+) result in slightly increased diffusion coefficient for 1 M potassium chloride-based solutions. This enhanced diffusion coefficient is attributed to the decrease in the viscosity of the aqueous solution on the addition of salt. When the counter-ion was varied in potassium-based salts, different effects were observed for different anions, resulting a reduction in the diffusion coefficient as a function of salt concentration. This reduction was modest for KBr, but significant for KI. Overall, no discernible changes were observed as the size of the PMPC coil was varied, except in case of KI for which a significant increase was observed at higher ionic strength. Divalent cations (Ca2+ and Mg2+, produced similar effects to those found for monovalent cations. These effects are explained by the interaction of PMPC with the hydrogen bond network of water molecules and with the adsorbed ions.
Original languageEnglish
JournalEuropean Polymer Journal
Pages (from-to)449-457
Number of pages9
Publication statusPublished - 2017
Externally publishedYes

Bibliographical note

This is an open access article under the CC BY license (

CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Solution dynamics, Diffusion, Zwitterionic, Phosphorylcholine, Polyelectrolyte

Download statistics

No data available

ID: 132119020