Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firing - DTU Orbit (14/08/2019)

Development of corrosion resistant materials in biomass fired power plants demands specific attention since the condensation of deposits rich in KCl on heat exchanger surfaces induces severe corrosion attack, which is different from corrosion in traditional coal fired plants. Therefore, the ability of preoxidized layers formed on a commercial Cr-Ti-Al-containing Ni-based alloy (Nimonic 80A) to withstand biomass-induced corrosion was investigated. Preoxidation treatments at 900 °C in O2 and O2 + 10 vol% H2O, respectively, were conducted before samples were exposed to conditions that mimicked biomass firing. Complementary characterization methods were employed to study samples after preoxidation as well as after corrosion exposure. The oxides obtained by the preoxidation treatments protected the alloy during corrosion exposure at 560 °C for a period of 168 h. In contrast, non-preoxidized samples suffered corrosion attack and formed porous non-protective oxides containing the alloying elements, Ni, Cr, Ti and Al. The influence of the preoxidation layers on the corrosion mechanism is discussed.

General information
Publication status: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, Department of Mechanical Engineering, Materials and Surface Engineering
Contributors: Okoro, S. C., Montgomery, M., Jappe Frandsen, F., Pantleon, K.
Pages: 76-87
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Surface and Coatings Technology
Volume: 319
ISSN (Print): 0257-8972
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.08 SJR 0.928 SNIP 1.565
Web of Science (2017): Indexed yes
Original language: English
Keywords: High temperature corrosion, Biomass firing, Preoxidation, KCl, Chlorination, TiO2
Electronic versions:
DOIs:
10.1016/j.surfcoat.2017.03.068
Source: PublicationPreSubmission
Source-ID: 131184651
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review